Cover illustration, Martin Lemelman/SIS

Editorial

Guest Editorial

Ada 94—The new OOP standard
Richard Riehle

Letters to the Editor

Modeling & Design
Building boxes: Composite objects

James Rumbaugh

C++
File iterators

Andrew Koenig

Smalltalk

Building an application using
HP Distributed Smalltalk
Wilf LaLonde & John Pugh

A Deeper Look...
...at translating actions

Stephen]. Mellor

Ad index

Product News

Recruitment

4

12

59

63

71

72
77

79

JOURNAL OF

OBJECT- ORIENTED

November-December 1994
Vol. 7, No. 7

Features

Time invariant virtual member function 23
dispatching for C++ evolvable classes
Roger Voss

A techni(llue for implementing a time-invariant virtual member function dispatch for C++ evolvable
classes is presented, focusing on matching the efficiency of dispatch of virtual functions for conventional
classes. Of utmost importance is economy in memory space, execution time, and compiler implementation
complexity. The dispatching scheme presented would be sufficiently flexible to undertake the self-
configurating architecture the author envisions and couple it to a rather efficient C++ runtime.

On the design of encapsulated 34
CLOS applications
Charlotte Pii Lunau & Kjeld Larsen

Encapsulation is a major objective when designing and implementing large commercial CLOS applica-
tions. This article identifies a set of objectives necessary to obtain proper encapsulation. CLOS is eval-
uated against the objectives; its deficiencies are described and solutions are proposed and demonstrated
through several examples from an industrial application.

-—--——-"“’r-”'

Modelling the real world: Are classes abstractions
or objects? 39
Chris Partridge

The system building process should start with a model of the relevant part of the real world, but most
0O-0 systems work is concerned with the later stages, taking O-O languages as a given and looking at how
to use them to build the system. This article discusses the origin of the object paradigm, and demonstrates
the value of beginning with real-world modeling using an O-O approach.

Object Modeling Technique (OMT): 46
Experience report

Mohamed E. Fayad, Wei-Tek Tsai, Richard L. Anthony,

& Milton L. Fulghum

The authors used Rumbaugh’s Object Modeling Technique (OMT) for engineering and developing a mis-
sion planning system. They discuss the positive and negative aspects of the technique and present OMTpro,
a hybrid technique they derived from OMT and other software development techniques to solve the issues
that arose during development.

The JourNAL o OBJECT-ORIENTED PROGRAMMING (ISSN #0896-8438) is published nine times a year, monthly except for Mar/Apr, Jul/Aug, and Nov/Dec by SIGS Publications Inc.,

71 West 23rd Street, 3rd floor, New York, New York 10010. Please direct advertising inquiries to this address. Second class postage paid at New York, New York, and additional mailing
offices. POSTMASTER: Send address changes to JOOP, P.O. Box 2030, Langhorne, PA 19047. Inquiries and new subscription orders should also be sent to that address. Annual subscrip-
tion rates for the U.S. are $199 for institutions, $69 for individuals. All foreign orders must be prepaid in U.S. funds drawn on a U.S. bank. Canadian & Mexican orders add $25 per year
and non-North American orders add $40 per air service. For service on current subscriptions, call 215.785.5996, fax 215.785.6073, e-mail p00976@psilink.com.

© Copyright 1994 SIGS Publications Inc. All rights reserved. Reproduction of this material by electronic transmission, Xerox, or any other method will be treated as a willful violation of
the US Copyright law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Statements of opinion and fact are made on the responsibility of the
authors alone and do not imply an opinion on the part of SIGS PUBLICATIONS INC. or the editorial staff. All trademarks are the property of their respective owners.

Manuscripts under review should be typed double spaced (in triplicate) and accompanied by an electronic file in TEXT format. Editorial correspondence and Product News information
should be sent to the Editor, Dr. Richard S. Wiener, 135 Rugely Court, Colorado Springs, CO 80906, 719.579.9616 (voice & fax).

Printed in the USA. Canada Post International Publications Mail Product Sales Agreement No. 290343.

NOVEMBER-DECEMBER 1994 3

Editorial

T IS THE TIME of year for big and important OOP conferences. The largest of all

OOP conferences, the ACM-sponsored OOPSLA ‘94, is coming up in three weeks.

Object Expo Europe took place last week (September 22-26) in London. This was

an outstanding conference that brought together speakers and attendees from North
America and Europe. For me it provided an opportunity to meet with some JOOP colum-
nists, writers, fellow editors, and friends and meet many European readers. I am told that
JOOP is being read in over 70 countries.

As we complete another year of publication I invite our readers to send letters to the Ed-
itorial Office or short communications via email (rsweiner@elbert.uccs.edu) that tell us what
you like in JOOP and what you would like to see improved. With such a geographically vast
readership it is important to receive constructive feedback.

This issue contains four feature articles in addition to our many columns.

“Time invariant virtual member functions dispatching for C++ evolvable classes” by
Roger Voss, is a “revisionary supplement to a previous paper entitled, “C++ Evolvable Base
Classes Residing in DynamicLinking Libraries.” An evolvable C++ base class is one that can
be exported from a shared library and derived from or used in other components. Roger pro-
poses an efficient scheme for implementing a new method dispatching approach.

“On the design of encapsulated CLOS applications” by Charlotte P. Lunau from Aal-
borg University, Denmark, and Kjeld Larsen from Sgren T. Lyngso A/S Research and De-
velopment Centre, examines the encapsulation mechanisms of CLOS and illustrates with
a case-study involving a maritime application.

“Modeling the real world: Are classes abstractions or objects?” by Chris Partridge ex-
amines the initial stage of object-oriented model construction. It shows how an object-ori-
ented approach provides for “better” models of the real world.

“Object modeling techique: An experience report” by Mohamed E. Fayad, Wei-Tek Tsai,
Richard L. Anthony, and Milton L. Fulgum, presents an assessment of the OMT approach
to object modeling.

Hope you enjoy this issue of JOOP. Stay warm!

Richard S. Wiener

OBJECT- ORIENTED

EDITOR
Dr. Richard Wiener
University of Colorado, Colorado Springs

SIGS PUBLICATIONS
ADVISORY BOARD
Thomas Atwood, Object Design
Frangois Bancilhon, O, Technologies
Grady Booch, Rational
George Bosworth, Digitalk
Adele Goldberg, ParcPlace Systems
R. Jordan Kreindler, Rational

Thomas Love, Morgan Stanley
Berwrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
CIiff Reeves, IBM
Dave Thomas, Object Technology International

JOOP EDITORIAL BOARD |
Daniel Fishman, Hewlett-Packard Labs
Stuart Greenfield, Marist College
Ivar Jacobson, Objective Systems
Boris Magnusson, Lund University
Lewis Pinson, University of Colorado
Eugene Wang, Symantec

COLUMNISTS
Steve Cook, Object Designers. Ltd.
John Daniels, Object Designers. Ltd.
Desmond D’Souza, [CON Computing
Richard Gabriel, ParcPlace
Robert Howard, Tower Technology
Andrew Koenig, AT¢ T Bell Labs
Wilf LaLonde, Carleton University
Mary E.S. Loomis, Hewlett-Packard
Stephen Mellor, Project Technology
James Odell, James Odell Associates
John Pugh, Carleton University
James Rumbaugh, Rational
Marc Wiener, Product News Editor
C. Thomas Wu, Naval Postgraduate School |

SIGS PUBLICATIONS, INC.

Richard P. Friedman
Founder & Group Publisher ‘

EDITORIAL/ PRODUCTION
Kristina Joukhadar, Managing Editor
Andrea Cammarata, Art Director
Elizabeth A. Upp, Production Editor
Margaret Conti, Advertising Production Coordinator
Tanya Trowell, Editorial Assistant |
Andrea Cammarata, Cover Design

Bruce Sh'river, Jr. Circulation Director
John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst |

CIRCULATION ‘

ADVERTISING/MARKETING
Shirley Sax, Director of Sales
Gary Portie, Advertising Manager, East Coast/ Canada/ Europe
Sales Representative, West Coast: |
Diane Fuller & Associates 408.255.2991, f: 408.255.2992 |
Kristine Viksnins, Advertising Assistant ‘
Michael Peck, Advertising Assistant
Sarah Hamilton, Director of Promotions and Research
Caren Polner, Promotions Graphic Artist

ADMINISTRATION
Margherita R. Monck, General Manager
David Chatterpaul, Accounting Manager

James Amenuvor, Bookkeeper
Michele Watkins, Assistant to the Publisher
Shannon Smith, Administrative Assistant

SIGS

PUBLICATIONS

Publishers of Journal of Object-Oriented Programming,
Object Magazine, C++ Report, Report on Object
Analysis & Design, The Smalltalk Report,
ObjektSpektrum (Germany), Objects in Europe (London),
and The X Journal.

Chris Partridge
E=————

REV-ENG Consulting.
email: 100275.2523@compuserve.com

Modelling the real world:
Are classes abstractions or objects?

HERE IS CURRENTLY an imbalance in object-oriented
(0O-0O) systems work. The system building process starts,
or at least should start, with a model of the relevant part
of the real world, move through various stages, and finish
with a working system. However, most O-O systems work is con-
cerned with the later stages of system building, and little time is
given to the earlystages. We can see this reflected in current O-O lit-
erature, which focuses on O-O programming, and often takes cur-
rent O-O programming languages as a given and considers how to
use these to build systems. This is doubly unfortunate as not only is
insufficient time spent on considering how to model the real world,
but O-O’s superior capabilities in this area are not being realised.
This article is an attempt to start redressing the balance. It looks
at the initial stage of O-O system building—modelling the real
world—taking only the notion of an object as a given. It shows how
an object-oriented approach at this stage enables us to build better
models of the real world and how this, in turn, clarifies a funda-
mental aspect of the O-O paradigm—revealing its expressive power.
A simple example—types of cars in a business system—is used
for illustration. An implementation model of car types is looked at
and found wanting—it does not reflect the real world properly.
A clearer understanding of car types is built up by going back to
fundamentals and examining our concept of a type of object—
the class object. This is done firstly by a brief look at the nature
of the object revolution, then by contrasting the pre-object ab-
straction paradigm for concepts with the object-oriented
paradigm’s “objectification” approach—and comparing both of
these with one derived from object-oriented programming (OOP).
This clearer understanding of class objects is then applied to the car
types example, giving a simple picture of what car types (and ob-
jects like car types) are in the real world. Hopefully this illustrates
the value of using an O-O approach to modelling the real world.

USER-DEFINED TYPES

Let’s consider our particular example. We are familiar with user- ,

defined types such as account, invoice, and deal types. Without
them users would not have the option of setting up their own types;

they would have to use the ones hard-coded into the system. The use
of these type objects is commonplace in business systems, whether
O-O or traditional; almost every system of a reasonable size has a
number of them. System builders are so familiar with them that
often they can—with little or no analysis—intuitively work out
how to implement the type objects required. The ease and familiarity
of the implementation of type objects means that obvious, but
awkward, questions that would arise during real-world modelling
do not get asked such as: what are type objects and what do they
model in the real world? An object-oriented approach enables us to
give useful and interesting answers to these questions.

Car types

Let’s look at a simple example of a system with user-defined types:
car types. Let’s say that in our system there are cars and car types.
Cars can be saloon cars* (i.e. the class Cars has a subclass Saloon
Cars). Car types can be saloon car types (i.e., the class Car Types
has a subclass Saloon Car Types). Each car has to be of a particular
type (i.e., each instance of the class'Cars is a type of an instance of
the class Car Types; with each instance of the class Saloon Cars re-
stricted to being a type of an instance of the class Saloon Car Types).
There is one type of car already set up in the system (i.e., there is
one instance of the class Saloon Car Types)—Premier. There are
two saloon cars set up in the system (i.e., instances of the class Sa-
loon Car)—Car # 123 and Car # 456, both of which are Premiers.
This is diagrammed in Figure 1.

The type structure in this model should be familiar to most
system builders. Now, ask the obvious but awkward question:
what does the model tell us about what car types are and what
they refer to in the real world? Not a lot; this is because it is an
implementation model—i.e., a model of how the system is to be
implemented—and so reflects the computer system, not the real
world. The model is not the result of describing the real world
(the first stage in the system building process), but a description of
the system to be implemented. If we are going to follow the con-

* “Saloon car” is British English for sedan car.

NOVEMBER-DECEMBER 1994 39

Modelling the real world

ventional system building process and start by building a real-
world model then we need to understand what car types (and types
in general) really are. Most people have not felt the need to ac-
quire this understanding, so we need to build it up now.

BACKGROUND

Building up this understanding can take some effort, not because
the ideas are complex—they are simple—but because they are new
and different. It is best achieved by examining the meaning and, in

particular, the history of the class object: this is a bigger subject
than is generally realised.

Notion of an object

_Or_igin. In the 4th century BC, the ancient Greek thinker Aristotle

roduced the notions of entity and attribute as the fundamental
information particles in his information paradigm. Although there
have been some rival theories since, these notions are still in use to-
day—after over two thousand years. They have had a remarkable
staying power.)

Only recently has the object paradigm emerged to challenge it.
Gottlob Frege (1848-1925), in his work published in the latter part
of the 19th century, made the breakthrough that started the shift to
the object paradigm rolling. I outline below how he introduced
the notions of an object and a concept defined in a logical (rather
than psychological) way; how he recognised that classes were ob-
jects and general concepts referred to class objects. Although this
technical jargon may sound daunting, the underlying ideas are re-
ally simple—simpler and less confused than the ideas they re-
place—as will become clear as they are explained.

Object conceptual revolution. Frege’s breakthrough started a con-
ceptual revolution that is still going on today. It is establishing an
information paradigm based upon objects as the fundamental in-
* mation particles. The revolution began in information science
and is now alive and kicking in the computing community, where
it is known as object-oriented computing.

Fundamental particles. What are fundamental information parti-
cles? We build our conceptual structures out of basic conceptual
building blocks—fundamental information particles. As our un-
derstanding progresses we go through conceptual revolutions, re-
placing the old types of fundamental information particles with
new types.

In physics, a similar type of revolution has occurred frequently—
this century physicists have changed their types of fundamental
physical particles many times. Physicists started the 20th century
with the atom as the fundamental physical particle. Everything
from aardvarks to zebras were made out of atoms. When they di-
vided the atom, they shifted to new fundamental particles; elec-
trons, neutrons, and protons. They then divided these particles
;}nd shifted to a profusion of new types, such as leptons and
fermions. In their latest paradigm, they have shifted to a single

_+of fundamental particle, superstrings.

T !le difference between the fundamental building blocks that

physics and information science deal with is that physics deals with

type of CAR
So— Y
CARS : TYPES
/]%)B CLASS /'Iib CLASS
: SALOON
SALOON
CARS 50__/'/—\ CAR
. - TYPES
1

Figure I. An implementation model of car types.

‘physical building blocks, whereas information science deals with

conceptual building blocks.)

Clearer relationship with real world. In computing, one of the per-
ceived benefits of the O-O approach is the ease and elegance with
which it models the real world—the objects in an O-O computer
system are more likely to be reflections of real-world objects than
is true of other approaches.

This links to a perceived benefit of the object approach in infor-
mation science, which has the major task of explaining how con-
cepts relate to the real world. It uses the object paradigm, which
neatly explains how general concepts in a notation refer to the real
world—they refer to class objects. The importance of this achievement
is shown by comparing the abstraction paradigm’s approach to con-
cepts—which has no explanation of how general concepts refer to the
real world—with the object paradigm’s objectification approach.

Comparing paradigms for concepts

The abstraction and object paradigms for concepts are described
and compared below. They are then compared with a paradigm
for concepts derived from OOP. As you read on, bear in mind that
the abstraction paradigm is an attempt to answer the question of
how we learn concepts and use them to make judgements, whereas
the object paradigm answers the question we raised above; to what
do general concepts refer?

Abstraction. In current usage, the word “abstraction” has acquired
many meanings. Historically it had a definite meaning, referring to
a particular mental process. We put abstractionism into its his-
torical context, capturing the definite meaning; describe how it
works; and then look at examples.

Origin of abstraction. Abstraction is a mental mechanism for creat-
ing ideas. The notion of abstraction has been around for a long time.
The person normally credited with introducing it is the English
thinker John Locke (1632-1704), although Aristotle (384-322 BC)
mentions it in passing. John Locke gave abstraction a central place in

40

joop

°. perceived

Figure 2. Schema of me learning my general idea of redness.

abstracted

perceived

Figure 3. Schema of me using my general idea of redness.

General Idea of Red

his thinking, claiming it was the process we use to stock our minds
with general ideas (Locke’s name for general concepts). Although
his abstraction paradigm may now seem awkward and inadequate,
we should remember that we are looking at it with the benefit of
centuries of hindsight—at the time it was a real achievement. We
should also remember that people still use it, almost unchanged, to-
day—for example, look at the description of a logical model as an ab-
straction of a physical model in a system modelling textbook.

What is abstraction? A key element of abstraction is the mental
process of taking an idea of a particular object and generating a
general idea by focusing on a single property of that thing and ig-
noring all its other properties. John Locke describes this process
and gives us an example:
.. . the Mind makes the particular Ideas, received from particular
objects, to become general; which is done by considering them as
they are in the Mind such appearances, separate from all other Ex-
istences, and the circumstances of real Existence, as time, place, or
any other concomitant Ideas. This is called ABSTRACTION,

whereby Ideas taken from particular Beings, become general rep-

resentatives of all the same kind; and their Names general Names,

applicable to whatever exists conformable to such abstract

Ideas. . . . Thus the same colour being observed to day in Chalk or

Snow, which the Mind yesterday received from Milk, it considers

that appearance alone, makes it a representative of all that kind;

and giving it the name Whiteness. . . and thus Universals, whether

Ideas or Terms, are made.!

There are levels of abstraction; a general idea can be made more gen-
eral by mentally ignoring some of its properties. Frege (who thought
abstractionism nonsense) gives us a good description and example:

Since everything is an idea, we can easily alter objects by directing

our attention towards this and away from that. The latter is par-

ticularly effective. We take less notice of a property, and it van-
ishes. By causing one characteristic after another to vanish we attain
to ever more abstract objects. Concepts too, are therefore ideas,
merely less complete ones than objects; they have only those prop-
erties from which we have not yet abstracted. . . . Let us suppose, for
example, there are sitting side by side in front of us a black and a
white cat. We pay no attention to their colour: they become colour-
less, but are still sitting side by side. We pay no attention to their pos-
ture: they are no longer sitting, without, however, assuming a differ-
ent posture; but each is still in the same position. We cease to attend
to their places: they become devoid of position, but continue to be
apart from one another. We have thus, perhaps, attained from
them a general concept of a cat.?
Frege continued, writing that by repeated application of the op-
eration of abstraction, “every object is transformed into an ever
more bloodless ghost” and, in abstraction, “the objects are essen-
tially altered thereby, so that the objects brought under the same
concept became more similar to one another.”

We can see that there are levels of gbstraction, and these levels
form a hierarchy of abstractness; with'ideas being more or less ab-
stract versions of other ideas.

Let’s consider an example (the “red example,” which will be
used again later) of how we learn about general ideas and use them
to make judgements. I have two red shapes (a triangle and a circle)
on the desk in front of me. I form an idea in my mind of each ob-
ject, creating two ideas in my mind, one for each shape. I now ignore
all the characteristics of these ideas except their redness, creating
two more ideas of similar appearance; I pick one of these as the
representative idea and call this a general idea of redness (see Fig. 2).
This illustrates how we learn about general ideas using abstraction.

Now I look at another red shape, and form an idea of it—still
remembering the general idea of redness. I now ignore all the char-
acteristics of my idea of the new red shape except its colour—I end
up with a general idea that has the same appearance as my general
idea of redness; so I deduce that the new shape has redness, or is red
(see Fig. 3).

This illustrates how I use abstraction to make judgements as to
whether a particular idea falls under a general idea; it is rather like
bird spotters comparing a particular bird with pictures in a book to
identify its species.

We can expand this example to “coloured”: I also have two
green shapes on my desk; I can use them to abstract to the idea of
greenness. I can use any or all of the shapes to abstract to the more

NOVEMBER-DECEMBER 1994

41

Modelling the real world

general idea of coloured. I now have a hierarchy of abstractness
(shown in Fig. 4).

Let’s consider conceptual structure. The diagram in Figure 5
(called a meta object schema) shows the underlying conceptual
structure of abstraction. Notice that the two relations “abstracted
from” and “more abstract than” are both created by the process
of abstraction. We will compare this with the meta object schemas
of the other conceptual structures.

Issues. This abstraction paradigm is at heart psychological. Con-
sidering the psychological problems inherent in the paradigm gives
us an insight into how it works.t In Locke’s time, psychology had
not evolved from philosophy and it was not standard practice to ver-
ify philosophy by experiment. While the paradigm may give a plau-
sible account of how a person uses general ideas, there is little ex-
perimental data to verify it.

You can see this by doing an experiment; go through the red
shape example observing yourself. Are you aware of yourself mak-

ing the idea of a shape in your mind or abstracting the colour ofa

shape? Do you recognise the new shape by abstracting the partic-
ular idea and comparing it with some general abstract idea? While
your lack of awareness of the abstraction mechanism does not
prove it does not exist—it may be working at an unconscious
level—it also does not prove it exists.

Abstraction is not the only way to acquire general concepts; we can
acquire a general idea without encountering particular examples. For
instance, botanists often learn about a species of flower from illus-
trations and descriptions before encountering an example. In these cir-
cumstances there must be something other than abstraction at work.

The paradigm is also representational; it assumes that ideas are
some sort of picture of what is being represented. We often talk in a
representational way, saying things such as “I have a picture of it in
my mind.” The red triangle and circle icons in Figure 2 are also rep-
resentational; they have a similar look to the things to which they
refer. The impulse to link ideas to the real world by some relation of
similar appearance is a good one, but unfortunately it does not work.
There are severe limitations, particularly for more “abstract” gen-
eral ideas. Locke was aware of this: he offers this example;

For example, does it not require some pains and skill to form the

general idea of a triangle, (which is yet none of the most abstract,

comprehensive, and difficult) for it must be neither Oblique, nor

Rectangle, neither Equilateral, Equicrural, nor Scalenon; but all

and none of these at once. In effect it is something imperfect, that

cannot exist; an Idea wherein some parts of several different and in-
consistent Ideas are put together.?

We can see the same problem in the awkward representation of
abstract redness in Figure 2: the general idea of redness has no
shape or size, but the icon representing it has a definite shape and
a definite size. It is not only a problem forming a representational
general idea, but, once formed, often the idea cannot refer to any-
thing in the real world, because there is nothing in the real world
that can be similar in appearance. For instance, the general idea

t Peter Geach in his book MENTAL ACTs (1957) provides a detailed criticism of the
psychological aspects of abstractionism.

- SCOLOURED

/ more
abstract :

than .

O@ A

Figure 4. Abstraction hierarchy schema of “coloured.”

abstracted
from
GENERAL PARTICULAR
IDEA IDEA
\ ag;ct)rraect rezgrs
MENTAL o
PHYSICAL
PHYSICAL
OBJECT

Figure 5. Meta object schema of abstraction.

of redness would have to refer to something in the real world with
no size or shape—clearly an impossibility.

Our real concern is not with the psychological problems de-
scribed above. Psychology studies the working of the human
mind—which we can consider as an implemented system, albeit im-
plemented in biological technology. Abstraction, if it does exist, is
afeature of human thought; it is not meant to and obviously does
notapply to computer system processing. Our interest here is in the
general characteristics of systems, not one particular type of system;
our interest is in what a system does, rather than in how a partic-
ular implementation does it.

These are logical questions. The particular logical question that
concerns us is how ideas relate (i.e. refer) to the real world. An idea or
concept of an individual physical object refers to that object; this is
not problematical, the relation is shown in Figure 5. But to what does
ageneralidea refer? Under an abstractionist paradigm it does not re-
fer atall, it is a mental entity, part of a mechanism that we use to recog-
nise properties of things. It is quite clear from the meta object schema
(Fig. 5) that for an abstractionist a general (mental) idea is not di-
rectly related to anything in the real world; it does not refer to anything
in the real world. So this paradigm does not address our question at all.

Objectification. As with abstractionism, it is useful to put ob-
jectification into its historical context and describe how it works,
before giving examples. By Frege’s time (the late 19th century), psy-
chology had evolved out of philosophy into a separate discipline, but
the philosophy of concepts, information science, was still rooted in ab-
stractionist psychology. Frege saw the problems, both psychological

42 JOooP

instance "

AN

RED
THING
#1

THING
#2

| CLASS RED

prans=—

RED

refers to

7

Figure 6. Schema of “red.”

CONCEPT

CLASS RED

member "

of

Figure 7. Reference diagram for the concept red.

COLOURS

C RED _) (_GREEN)

—(COLOURED)—+

GREEN

Figure 8. Real-world schema of classes colours and coloured.

and logical, with abstraction. He proposed a new paradigm for con-
cepts with a logical rather than a psychological basis.¥ Unlike Locke’s
abstractionism, Frege’s paradigm is not meant to deal with psycho-
logical matters. It deals with logical matters, which Locke’s abstrac-
tionism signally fails to do. Under Frege’s approach, a general concept
(the logical name for Locke’s psychological general idea) is the name
for a class of objects.S This answers the question—to what does a
general concept refer? A general concept refers to a class of objects.
This much should be familiar to O-O practitioners. In this scheme
of things the abstraction hierarchy is replaced with a super-subclass
hierarchy. Where abstractionists say this general concept A is more
abstract than that concept B, Frege would say that this general con-
cept A refers to a subclass of the class referred to by that concept B.
However Frege could and did go a step further. He suggested a
class of objects was also an object in its own right. In recognising the
class as an object, one is objectifying it—hence the name objectification.
A shift like this from one paradigm to another opens up new avenues
of thought. This is the case here. If we acquire general concepts by ab-
straction, and make them more general by further abstraction, then
there is only an abstraction hierarchy. Things are different if classes are
objects. They can be grouped together to form a class—a class of
classes. Classes of classes are also objects and so can also be grouped
together into classes—classes of classes of classes—and so on, ad

. infinitum. Treating classes as objects opens up a whole new hierarchy,

the class-member hierarchy.

This means general concepts refer to something physical, some-
thing in the real world. Physical objects obviously belong to the real
world, so each class of physical objects and class of classes of phys-
ical objects (and so on) does as well: unlike Locke’s general ideas,
Frege’s general concepts refer to classes (class objects) that belong
to the real world. In the same way that names of physical objects
(singular concepts) refer to an object, a general concept is a name
that refers to a class object. This gives us a simple and clear rela-
tionship between concepts (general or singular) and the real world.

The practical import of this can be made clear with an example.
Let us reuse the example of red shapes. I start again with the two red
shapes on the table. I classify the shapes as red, constructing the
class red. Figure 6 shows that I now have three objects in the real
world: two physical objects and one class object.

Notice how the structure of the model reflects the structure of the
real world. Each of the objects in the real world has a correspond-
ing object in the model—the relationship between the concept red
and the real world is shown in the reference diagram in Figure 7.

We can now expand the example to include classes of classes.
Let’s consider the two green shapes and classify them as green
things—constructing the class green. I now have two classes, red and
green. In a similar way to the abstractionist example, I can now
classify all the red and green shapes as coloured shapes and construct
the class coloured. Unlike the abstractionist example, I can also
classify the two class objects, red and green, as colours—con-

+ Frege recognised the importance of this, making it a “fundamental princi-
ple. . .always to separate sharply the psychological from the logical.”

$ This is a simplification of Frege’s position, he looked upon concepts as “unsatu-
rated entities.” The terms used here reflect contemporary usage rather than be-
ing an historically accurate reflection of Frege’s usage.

NOVEMBER-DECEMBER 1994

43

Modelling the real world

structing the class colours. In this situation, represented in Figure
8, red and green are both types of colour. Notice abstractionists
cannot make this move because it cannot be done by abstracting.
Figure 8 shows that the classes red and green are both subclasses
of the class coloured things and members of the class colours. The
form of the diagram in Figure 8 is not wholly satisfactory: a class ob-
ject (such as red) that is also a member of another class has to be
iconised twice—once as a rounded rectangle and a rectangle and
again as just a rounded rectangle.
A more satisfactory way of showing this is to diagram the concepts
that refer to the objects as in the object schema shown in Figure 9.
Using this approach, each concept is only iconised once. Each
class icon contains a members icon; this enables the diagram to dis-
tinguish relations between classes (such as “subclass”) from rela-
- tions between members (such as “instance of” in the next object
schema—TFig. 11). It also ensures that a distinction is made between
the name of the class and the name for its members: there is a ten-
dency in O-O computing to call a class by the name of its members.
The relationship between toncepts and the real world is refer-
ence. The reference diagram in Figure 10 shows how reference
works for concepts that refer to classes of classes.

Solution. Frege rightly recognised that a general concept refers to a
class of objects. This effectively answers the question of what a car
type is—it is the class of cars of that type. The objectification
paradigm is a neat solution to the logical problem of the reference
of general concepts—which was not solved by abstractionism. His
insight that classes were objects and so should be treated like objects
and be “allowed” to be members of classes significantly enhanced
the expressive power of the paradigm, enabling it to describe things
that could not be described under abstractionism.

The meta object schema in Figure 11 shows the underlying con-
ceptual structure of the objectification paradigm.

Compare this with the meta schema for abstraction (Fig. 5). There
are two main points to note. First, in the objectification schema the
model structure reflects (one could say simulates) the real-world struc-
ture; this ensures that the model is a reflection of the real world. There
is no feeling of reflection in the abstraction schema. Second, the ob-
jectification modelling notation is more powerful and can produce a
more expressive model of the real world. The real world portions of
these two schemas show the types of thing in the real world that can
be described using that modelling notation: they illustrate the nota-
tion’s power. Comparing the two schemas, it is obvious that the ob-
jectification modelling notation is much stronger, in that it can be
used to describe a whole new hierarchy: the class-member hierarchy.

OOP-BASED CONCEPTUAL STRUCTURE

Even though OOP does not have an explicit paradigm for con-

cepts, we can derive (or, more technically, reverse-engineer) one.

The conceptual structure of the 00P-based paradigm for concepts
is shown in the meta object schema depicted in Figure 12.
Compare this with the meta schemas for abstraction (Fig. 5)
nd objectification (Fig. 11). This schema is similar in structure to
the objectification schema. The model reflects the real world. The
real-world portion of this schema is the same as the objectification

COLOURS

COLOUR

COLOURED

COLOURED
THING

in: instance

instance .- . instance

fan Pany Jany /T
RED RED GREEN GREEN
THING THING THING THING
#1 #2 #3 #4

Figure 9. Object schema for class colour.
CONCEPT
COLOUR
MODEL | refers to
REALWORLD —(GIASS GOLOUR

el TN
L——*—, CLASS GREEN

ember member
of of

Figure 10. Reference diagram for concept “colour.”

CONGEPTS GENERAL CONCEPTS SINGULAR CONCEPTS|
GENERAL SINGULAR
CONCEPT
- suE(EPT | CONCEPT 50\ CONCEPT
refers| & 1K :
to | _ instance | sub
: S~ of _~ _concept
. | g
REAL WORLD 7
OBJECTS CLASSES PHYSICAL OBJECTS
=
OBJECT CLASS
| s, | 4\0\ OBJECT
% L y
member |
\\\ of // \ sub
T class

Figure I1. Meta object schema of objectification conceptual structure.

schema because we know that we need be able to describe at least the
types of thing shown there. However, there is one element of the real
world that is not reflected accurately in the 00P-based model—
the “member of” relation. It is not expressive enough; it cannot de-
scribe classes higher up the class-member hierarchy than classes of
physical objects. The “instance of” relation is similar in structure
to abstraction’s “abstracted from” relation (see Fig. 5); we can see that
the OOP- based paradigm has an abstractionist legacy.

The 0OP-based paradigm could be called a classification
paradigm for concepts as it recognises classes, but even though it

44 Joop

(OOP OBJECTS OOP CLASSES instance | OOP INSTANCES
OBJECT glé?qcsm' CLASS | - INSTANCE
.\
refers ; -
to + OOP sub
. class
MODEL 5 "
REAL WORLD l "
OBJECTS] CLASSES PHYSICAL OBJECTS
. | PHYSICAL
OBJECT CLASS
sus ol 1 . OBJECTS
L=
member !
of sub

_cClass

Figure 12. Meta object schema of 00P-based concept paradigm.

CAR TYPE
PREMIER

(" _cArS)
{ CARS)

SALOON CARS y—
‘ PREMIER

Figure 13. Schema of car types.

CARS CAR TYPES

CAR SUB CLASS

CAR TYPE l
SUB CLASS //"/

SALOON CARS

I SALOON CAR I

sus Cmssk}\ /]\ instance
PREMIER

I PREMIER CAR]l

instance m

‘?]\instance

CAR #123 'CAR #456

Figure 14. Object schema for real-world model of car types.

calls them objects, it does not give them the full rights of objects. En-
hancing a classification paradigm with the increased power of the
objectification paradigm does not increase its complexity, it only
changes its shape. Only a small change is required; changing the “in-
stance of” relation between OOP Class and Instance to one between
00P Class and OOP Object.

I suspéct that there is a conceptual barrier that stops alot of O-O
practitioners (and so OOP) from going further than the classification
paradigm and making the shift to objectification. I think it is because they
are still under the influence of the abstraction paradigm; they still think
of general concepts in terms of abstraction. This is hardly surprising as

abstractionism is deeply embedded in the way most people think. When
eventually its influence is eroded, and the object paradigm becomes the
natural way to think, the classification paradigm will disappear too.

REAL-WORLD MODEL OF CAR TYPES
Now let’s build a real-world model of our car types example. Look
again at Figure 1, and also at the real-world schema in Figure 13.

Ask yourself what Premier really is. Premier is a type and so it is
a class, the class of Premier Cars. It is also a member of the class
Car Types; so Car Types is a class of classes.

If we were to build the model using a classification paradigm for
concepts then we would be faced with an awkward dilemma: if we
recognise Premier as a class then our paradigm is not expressive
enough to also recognise it as a member of the class Car Types; sim-
ilarly, if we recognise it as a member of the class Car Types, we can-
not recognise it as a class. System builders need to make a choice be-
tween these two options, neither of which is satisfactory. They tend
to choose the second, which is probably the better of the two, but
leaves us with the problem of explaining what types are in the real
world. Considering these problems, it is understandable that we
do not spend time asking what a car type really is.

However, if we have an objectification paradigm for concepts it does
make sense to ask the question. We can model the real world directly.
recognising Premier as a class and a member of the class Car Types. The
object schema for the real-world model is given in Figure 14.

Compare the real-world and implementation models (in Figs. 1
and 14). Just by looking at the two models, one can tell that the real-
world model is simpler in structure; comparing the number of relations
the real model has six to the implementation model’s nine. Premier i
now a class and also a subclass of the class Saloon Cars; Cars #123 anc
#456 are members of the class Premier. The real-world model is mor«
expressive, making clear the nature of car types. Our understanding o
what the concepts really refer to give us a semantically richer percep
tion of what is going on. The model gives a simpler, clearer (and mor
accurate) reflection of what is actually going on in the real world.

SUMMARY

We have seen that we can get a better understanding of the natur
of things and a simpler model when we look closely at what th
objects in our systems actually refer to in the real world. This bet
ter understanding and simpler model are only possible, in this casc
through the use of an O-O approach. We have also seen how fo
cusing on the real world can give us a better understanding of th:
0-0 paradigm. Hopefully this will persuade you to spend mor,
time modelling the real world. ®

References

1. Locke, J. AN Essay CoNCERNING HUMAN UNDERSTANDING, Book II, Chay
XI, Sect. 9, Clarendon Edition, Oxford University Press, Oxford, 1975 (orig
inally published in 1689).

2. Frege, G. Review of Husser!’s ‘Philosophie der Arithmetic’ ZPK, vol CII
312-313, 1894. Translated by Kluge, E., Minp, LXXXI, 321-337, 1972.

3. Locke, J. AN Essay CONCERNING HUMAN UNDERSTANDING, Book IV, Cha;
VII, Sect. 9, Clarendon Edition, Oxford University Press, Oxford, 197
(originally published in 1689).

NOVEMBER-DECEMBER 1994

