
Cover illustration, Martin Lemelman/515

E�itorial

Guest Editorial

Ada 94-The new OOP standard

Richard Riehle

Letters to the Editor

Modeling & Design

Building boxes: Composite objects

James Rumbaugh

C++

File iterators

Andrew Koenig

Smalltalk

Building an application using

HP Distributed Smalltalk

WilfLaLonde & John Pugh

A Deeper Look ...

. . . at translating actions

Stephen J. Mellor

Ad index

Product News

Recruitment

4

6

8

12

59

63

71

72

77

79

JOURNAL OF

OBJECT-ORIENJED
p

November-December 1994
Vol. 7, No. 7

Features

Time invariant virtual member function
dispatching for C++ evolvable classes
Roger Voss

23

A technique for implementing a time-invariant virtual member function dispatch for C++ e\'oh·able
classes is presented, focusing on matching the efficiency of dispatch of virtual functions for conventional
classes. Of utmost importance is economy in memory space, execution time, and compiler implementation
complexity. The dispatching scheme presented would be sufficiently flexible to undertake the self
configurating architecture the author envisions and couple it to a rather efficient C++ runtime.

On the design of encapsulated
CLOS applications
Charlotte Pii Lunau & Kjeld Larsen

34

Encapsulation is a major objective when designing and implementing large commercial CLOS applica
tions. This article identifies a set of objectives necessary to obtain proper encapsulation. CLOS is e\'al
uated against the objectives; its deficiencies are described and solutions are proposed and demonstrated
through several examples from an industrial application.

Modelling the real world: Are classes abstractions
or objects? 39
Chris Partridge

The system building process should start with a model of the relevant part of the real world, but most
0-0 systems work is concerned with the later stages, taking 0-0 languages as a given and looking at how
to use them to build the system. This article discusses the origin of the object paradigm, and demonstrates
the value of beginning with real-world modeling using an 0-0 approach .

Object Modeling Technique (OMT):
Experience report
Mohamed E. Fayad, Wei-Tek Tsai, Richard L. Anthony,

& Milton L. Fulghum

46

The authors used Rumbaugh's Object Modeling Technique (OMT) for engineering and developing a mis
sion planning system. They discuss the positive and negative aspects of the technique and present OMT pro,
a hybrid technique they derived from OMT and other software development techniques to solve the issues
that arose during development.

The JOURNAL OF OBJECT-ORIENTED PROGRAMMING (ISSN #0896-8438) is published nine times a year, monthly except for Mar/Apr, Jul/Aug, and Nov/Dec by SIGS Publications Inc.,
71 West 23rd Street, 3rd floor, New York, New York 10010. Please direct advertising inquiries to this address. Second class postage paid at New York, New York, and additional mailing
offices. POSTMASTER: Send address changes to JOOP, P.O. Box 2030, Langhorne, PA 19047. Inquiries and new subscription orders should also be sent to that address. Annual subscrip
tion rates for the U.S. are $199 for institutions, $69 for individuals. All foreign orders must be prepaid in U.S. funds drawn on a U.S. bank. Canadian & Mexican orders add $25 per year
and non-North American orders add $40 per air service. For service on current subscriptions, call 215.785.5996, fax 215.785.6073, e-mail p00976@psilink.com.
© Copyright 1994 SIGS Publications Inc. All rights reserved. Reproduction of this material by electronic transmission, Xerox, or any other method will be treated as a willful violation of
the US Copyright law and is flatly prohibited. Material may be reproduced with express permission from the publisher. Statements of opinion and fact are made on the responsibility of the
authors alone and do not imply an opinion on the part of SIGS PUBLICATIONS INC. or the editorial staff. All trademarks are the property of their respective owners.
Manuscripts under review should be typed double spaced (in triplicate) and accompanied by an electronic file in TEXT format. Editorial correspondence and Product News information
should be sent to the Editor, Dr. Richard S. Wiener, 135 Rugely Court, Colorado Springs, CO 80906, 719.579.9616 (voice & fax).
Printed in the USA. Canada Post International Publications Mail Product Sales Agreement No. 290343.

NOVEMBER-DECEMBER 1994 3

Editorial

I
T IS THE TIME of year for big and important OOP conferences. The largest of all
OOP conferences, the ACM-sponsored OOPSLA '94, is coming up in three weeks.
Object Expo Europe took place last week (September 22-26) in London. This was
an outstanding conference that brought together speakers and attendees from North

America and Europe. For me it provided an opportunity to meet with some JOOP colum
nists, writers, fellow editors, and friends and meet many European readers. I am told that
JOOP is being read in over 70 countries.

As we complete another year of publication I invite our readers to send letters to the Ed
itorial Office or short communications via email (rsweiner@elbert.uccs.edu) that tell us what
you like in JOOP and what you would like to see improved. With such a geographically vast
readership it is important to receive constructive feedback.

This issue contains four feature articles in addition to our many columns.
"Time invariant virtual member functions dispatching for C++ evolvable classes" by

Roger Voss, is a "revi�ionary supplement to a previous paper entitled, "C++ Evolvable Base
Classes Residing in Dynamic Linking Libraries." An evolvable C++ base class is one that can
be exported from a shared library and derived from or used in other components. Roger pro
poses an efficient scheme for implementing a new method dispatching approach.

"On the design of encapsulated CLOS applications" by Charlotte P. Lunau from Aal
borg University, Denmark, and Kjeld Larsen from S0ren T. Lyngs0 A/S Research and De
velopment Centre, examines the encapsulation mechanisms of CLOS and illustrates with
a case-study involving a maritime application.

"Modeling the real world: Are classes abstractions or objects?" by Chris Partridge ex
amines the initial stage of object-oriented model construction. It shows how an object-ori
ented approach provides for "better" models of the real world.

"Object modeling techique: An experience report" by Mohamed E. Fayad, Wei-Tek Tsai,
Richard L. Anthony, and Milton L. Fulgum, presents an assessment of the OMT approach
to object modeling.

Hope you enjoy this issue ofJOOP. Stay warm!

/

Richard S. Wiener

4

JOURNAi.Of

OBJECT-ORIENTED

.f,�
EDITOR

Dr. Richard Wiener
University of Colorado, Colorado Springs

SIGS PUBLICATIONS
ADVISORY BOARD

Thomas Atwood, Object Design
Fran1rois Bancilhon, 02 Technologies

Grady Booch. Rational
George Bosworth, Digitalk

Adele Goldberg, ParcPlace Systems
R. Jordan Kreindler, Rational
Thomas Love, Morgan Stanley

Bertrand Meyer, /SE
Meilir Page-Jones, \Vay/and S_i-srcm_.:;

Cliff Reeves, IBM
Dave Thomas, Object Technology Imemational

JOOP EDITORIAL BOARD
Daniel Fishman, Hewlett-Packard wbs

Stuart Greenfield, Marist College

Ivar Jacobson, Objective Systems
Boris Magnusson, Lund Unii·ersit y

Lewis Pinson, University of Colorado
Eugene Wang, Symamec

COLUMNISTS
Steve Cook, Object Designers. Ltd.

John Daniels, Object Designers. Ltd.
Desmond D'Souza, ICON Computing

Richard Gabriel, ParcPlace
Robert Howard, Tower Technology
Andrew Koenig, AT&T Bell u,b;

WilfLalonde, Carleton Unin..,-sit y

Mary E.S. Loomis, J-{ewlett-Packard
Stephen i\lellor, Project Technology

James Odell, James Odell Associate,
John Pugh, Carleton University

James Rumbaugh, Rational

Marc Wiener, Product News Editor
C. Thomas \Vu, Naval Postgraduate School

SIGS PUBLICATIONS, INC.

Richard P. Friedman
Founder & Group Publisher

EDITORIAL/ PRODUCTION
Kristina Joukhadar, Managing Editor

Andrea Cammarata, Art Director
Elizabeth A. Upp, Production Editor

Margaret Conti, Advertising Production Coordinator
Tanya Trowell, Editorial Assistant
Andrea Cammarata, Cover Design

CIR CU LA TION
Bruce Shriver, Jr. Circulation Director

John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

ADVERTISING/MARKETING
Shirley Sax, Director of Sales

Gary Portie, Advertising Manager, East Coast/ Canada! Europe
Sales Representative, West Coast:

Diane Fuller & Associates 408.255.2991, f: 4-08.255.2992
Kristine Viksnins, Advertising Assistant

Michael Peck, Advertising Assistant
Sarah Hamilton, Director of Promotions and Research

Caren Polner, Promotions Graphic Artist

ADMINISTRATION
Margherita R. Monck, General Manager
David Chatterpaul, Accounting Manager

Jrunes Amenuvor, Bookkeeper
Michele Watkins,Assistant to the Publisher
Shannon Smith, Administrative Assistant

SIGS
PUBLICATIONS

Publishers of Journal of Object-Oriented Programming,
Object Magazine, C++ Report, Report on Object

Analysis & Design, The Smalltalk Report,
ObjektSpektrum (Germany), Objects in Europe (London),

and TheXJournal.

Chris Partridge

REV-ENG Consulting.

email: I 00275.2523@compuserve.com

Modelling the real world:
Are classes abstractions or objects?

T
HERE IS CURRENTLY an imbalance in object-oriented
(0-0) systems work. The system building process starts,
or at least should start, with a model of the relevant part
of the real world, move through various stages, and finish

with a working system. However, most 0-0 systems work is con
cerned with the later stages of system building, and little time is
given to the early stages. We can see this reflected in curre�t 0-0 lit
erature, which focuses on 0-0 programming, and often takes cur
rent 0-0 programming languages as a given and considers how to
use these to build systems. This is doubly unfortunate as not only is
insufficient time spent on considering how to model the real world,
but 0-0's superior capabilities in this area are not being realised.

This article is an attempt to start redressing the balance. It looks
at the initial stage of 0-0 system building-modelling the real
world-taking only the notion of an object as a given. It shows how
an object-oriented approach at this stage enables us to build better
models of the real world and how this, in turn, clarifies a funda
mental aspect of the 0-0 paradigm-revealing its expressive power.

A simple example-types of cars in a business system-is used
for illustration. An implementation model of car types is looked at
and found wanting-it does not reflect the real world properly.
A clearer understanding of car types is built up by going back to
fundamentals and examining our concept of a type of object
the class object. This is done firstly by a brief look at the nature
of the object revoluti<;m, then by contrasting the pre-object ab
straction paradigm for concepts with the object-oriented
paradigm's "objectification" approach-and comparing both of
these with one derived from object-oriented programming (OOP).

This clearer understanding of class objects is then applied to the car
types example, giving a simple picture of what car types (and ob
jects like car types) are in the real world. Hopefully this illustrates
the value of using an 0-0 approach to modelling the real world.

USER-DEFINED TYPES

Let's consider our particular example. We are familiar with user
defined types such as account, invoice, and deal types. Without
them users would not have the option of setting up their own types;

they would have to use the ones hard-coded into the system. The use
of these type objects is commonplace in business systems, whether
0-0 or traditional; almost every system of a reasonable size has a
number of them. System builders are so familiar with them that
often they can-with little or no analysis-intuitively work out
how to implement the type objects required. The ease and familiarity
of the implementation of type objects means that obvious, but
awkward, questions that would arise during real-world modelling
do not get asked such as: what are type objects and what do they
model in the real world? An object-oriented approach enables us to
give useful and interesting answers to these questions.

Car types
Let's look at a simple example of a system with user-defined types:
car types. Let's say that in our system there are cars and car types.
Cars can be saloon cars* (i.e. the class Cars has a subclass Saloon
Cars). Car types can be saloon car types (i.e., the class Car Types
has a subclass Saloon Car Types). Each car has to be of a particular
type (i.e., each instance of the class"Cars is a type of an instance of
the class Car Types; with each instance of the class Saloon Cars re
stricted to being a type of an instance of the class Saloon Car Types).
There is one type of car already set up in the system (i.e., there is
one instance of the class Saloon Car Types)-Premier. There are
two saloon cars set up in the system (i.e., instances of the class Sa
loon Car)-Car # 123 arid Car# 456, both of which are Premiers.
This is diagrammed in Figure 1.

The type structure in this model should be familiar to most
system builders. Now, ask the obvious but awkward question:
what does the model tell us about what car types are and what
they refer to in the real world? Not a lot; this is because it is an
implementation model-i.e., a model of how the system is to be
implemented-and so reflects the computer system, not the real
world. The model is not the result of describing the real world
(the first stage in the system building process), but a description of
the system to be implemented. If we are going to follow the con-

• "Saloon car" is British English for sedan car.

NOVEMBER-DECEMBER 1994 39

Modelling the real world

general idea of coloured. I now have a hierarchy of abstractness (shown in Fig. 4). Let's consider conceptual structure. The diagram in Figure 5 (called a meta object schema) shows the underlying conceptual structure of abstraction. Notice that the two relations "abstracted from" and "more abstract than" are both created by the process of abstraction. We will compare this with the meta object schemas of the other conceptual structures.
Issues. This abstraction paradigm is at heart psychological. Considering the psychological problems inherent in the paradigm gives us an insight into how it works.t In Locke's time, psychology had not evolved from philosophy and it was not standard practice to verify philosophy by experiment. While the paradigm may give a plauiible account of how a person uses general ideas, there is little experimental data to verify it. You can see this by doing an experiment; go through the red shape example observing yourself. Are you aware of yourself making the idea of a shape in your mind or abstracting the colour of a shape? Do you recognise the new shape by abstracting the particular idea and comparing it with some general abstract idea? While your lack of awareness of the abstraction mechanism does not prove it does not exist-it may be working at an unconscious level-it also does not prove it exists. Abstraction is not the only way to acquire general concepts; we can acquire a general idea without encountering particular examples. For instance, botanists often learn about a species of flower from illustrations and descriptions before encountering an example. In these circumstances there must be something other than abstraction at work. The paradigm is also representational; it assumes that ideas are some sort of picture of what is being represented. We often talk in a representational way, saying things such as "I have a picture of it in my mind." The red triangle and circle icons in Figure 2 are also rep-,resentational; they have a similar look to the things to which they refer. The impulse to link ideas to the real world by some relation of similar appearance is a good one, but unfortunately it does not work. There are severe limitations, particularly for more "abstract" general ideas. Locke was aware of this: he offers this example; For example, does it not require some pains and skill to form the general idea of a triangle, (which is yet none of the most abstract, comprehensive, and difficult) for it must be neither Oblique, nor Rectangle, neither Equilateral, Equicrural, nor Scalenon; but all and none of these at once. In effect it is something imperfect, that cannot exist; an Idea wherein some parts of several different and inconsistent Ideas are put together.3

We can see the same problem in the awkward representation of abstract redness in Figure 2: the general idea of redness has no shape or size, but the icon representing it has a definite shape and a definite size. It is not only a problem forming a representational general idea, but, once formed, often the idea cannot refer to anything in the real world, because there is nothing in the real world that can be similar in appearance. For instance, the general idea
t Peter Geach in his book MENTAL ACTS (1957) provides a detailed criticism of the

psychological aspects of abstractionism.

... /�ore,/ abstract
�than

�

Figure 4. Abstraction hierarchy schema of "coloured."

MENTAL

GENERAL

IDEA

more abstract than

PARTICULAR

IDEA

refers to
.

PHYSICAL
PHYSICAL

OBJECT

Figure 5. Meta object schema of abstraction.

of redness would have to refer to something in the real world with no size or shape-clearly an impossibility. Our real concern is not with the psychological problems described above. Psychology studies the.working of the human mind-which we can consider as an impl�mented system, albeit implemented in biological technology. Abstraction, if it does exist, is a feature of human thought; it is not meant to and obviously does not apply to computer system processing. Our interest here is in the general characteristics of systems, not one particular type of system; our interest is in what a system does, rather than in how a particular implementation does it. These are logical questions. The particular logical question that concerns us is how ideas relate (i.e. refer) to the real world. An idea or concept of an individual physical object refers to that object; this is not problematical, the relation is shown in Figure 5. But to what does a general idea refer? Under an abstractionist paradigm it does not refer at all, it is a mental entity, part of a mechanism that we use to recognise properties of things. It is quite clear from the meta object schema (Fig. 5) that for an abstractionist a general (mental) idea is not directly related to anything in the real world; it does not refer to anything in the real world. So this paradigm does not address our question at all
Objectification. As with abstractionism, it is useful to put objectification into its historical context and describe how it works, before giving examples. By Frege's time (the late 19th century), psychology had evolved out of philosophy into a separate discipline, but the philosophy of concepts, information science, was still rooted in abstractionist psychology. Frege saw the problems, both psychological

42 JOOP

